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HEAT TRANSFER FROM A TUBE BUNDLE IN
LONGITUDINALLY FLOWING WATER AND
ETHYLENE GLYCOL

A. Ya. Inayatov UDC 536.242

Heat transfer in tube bundles may be calculated from various formulas [1-8, 8-11], but there are
no standard recommendations derived from analysis of all the published evidence. A survey has been made
{11 of 14 papers for 21 tube assemblies carrying air and superheated steam with Pr = 0.7-1; here a survey
is made of 10 further papers from the USA, USSR, France, and Czechoslovakia for 14 geometries with water
flowing at Pr values of 1.1-6.5, and also for a mixture of 60% ethylene glycol and 40% water at a Pr of 11~
18. The relative Nusselt number is here obtained as a function of the geometrical criterion in curvilinear
form, as in [1]. The results from 24 sets of measurements by Soviet and other workers for 35 tube agsem-
blies have given new and reliable recommendations for the heat calculation:

Nub = Nupbsps,

which applies for Re = 6 -10°-10%; Pr = 0.7-18; s,s,/d? = 1.2-6; Nup, is the Nusselt number for the bundle,
while Nup {s the Nusselt number for circular tubes from [12], or from the standard method of {7, 8], or
from the standard method of [3]; P¢ is a correction factor to the temperature factor in accordance with [6-
8,12], and ¢4 is a correction factor to the geometrical factor derived as in [1].

The method gives the best correction for the heat-transfer coefficient as a function of bundle geo-
metry and also of the temperature factor, and the spread of most of the observed points around the line is
only £4~6%.

These results show that it is unjustified to use formulas for tubes without correction factors at high
s/d in order to calculate the mean heat transfer.

In practice, it appears best to perform such a generalization by assigning the physical properties of
the liquid to the mean temperature and taking the hydraulic diameter of the bundle as the definitive dimen-
sion.
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THERMAL-RESISTANCE DETERMINATION
WITH HE AT-SENSITIVE PAINTS

S. I. Vygovskii, V. A. Egorov, UDC 536.622:621.382.2
E. P. Mironov, and I. P. Nekrasov

The external thermal resistance of a component Ry, is of interest in heat-exchanger design, since
this can be reduced in order to minimize the temperature difference.

The usual methods of measuring Ry, by means of contact transducers require special measuring in-
struments and are unsuitable for miniature electronic devices. '

A method is given for measuring Ry, by means of fusible temperature-indicating coatings.

Results are given from an experiment that confirms R, can be determined in this way with an
accuracy sufficient for most practical purposes.
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Original article submitted December 12, 1974.

SURFACE TEMPERATURE OF STEEL DURING
AIR-BLAST EROSION

G. V. Samsonov, A. A, Markov, UDC 669.14.018
and A. A. Dan'kin

A fast gas stream containing an abrasive erodes the surface of stainless steel, which produces a tem-
perature distribution in the contact zone, which must influence the processes in the wear zone, which are
also influenced by the properties of the colliding materials and the failure mechanism.
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Fig. 1. Surface temperature of 1Kh13L and
1Kh18N9TL steels during abrasive blasting

of P, = 6 kgf/em?, o= 60°, and K, (kg-cm™?
-h=1) of: 1, 2) 61; 3, 4) 5.1; 5) 144; 1, 3) open-
circuit thermocouple at surface; 2, 4) thermo-
couple at depth of 1.0 mm; 5) thermocouple

at depth of 2.0 mm.

1202



A study has been made of the effects on temperature distribution at the surface and in lower layers
for 1Kh13L and 1Kh18N9TL steels in jets of air containing abragives at various angles of attack and abra-
sive concentrations; the temperatures were measured with thermocouples ingerted to depths of 1-2 mm
from the surface, and also with open-loop thermocouples, whose hot junctiong were formed during wear
at the surface; the temperature at the surface is determined by the angle of attack, the abrasive concentra-
tion, and the properties of the metal. Values up to 800°C can cccur (Fig. 1).

These values for the temperature are to be congidered as averages and below the actual values in
microscopic volumes at the instant of collision with abrasive particles, since the heat released in wear is
transmitted to the surrounding medium and absorbed by the eroded material. As the surface is vigorously
cooled by the air, and the largest plastic deformation (and, consequently, the maximum heat release) occurs
at a certain depth, particularly with work-hardening steelg, one naturally finds the maximum mean tem-
perature near the surface when the steady state is reached.

The temperatures found for 1Kh13L steel under identical wear conditions are higher than those for
1Kh18NI9TL steel, which is due to the difference in properties.

NOTATION

o is the angle of attack at surface (deg);

P, isthe air pressure (kgf/cm?) before nozzle;

K,  is the abrasive concentration in blast (kg- em~2.h1);
is the temperature (°C);

T is the time (sec).

Dep. 946-75, February 10, 1975,
Original article submitted October 10, 1973.

NONSTEADY FLOWS OF CONDENSING VAPOR IN
LAVAL NOZZLES WITH COUNTERPRESSURE

G. A. Saltanov, A. V. Kurshakov, UDC 621.165.51(043)
and A. N. Kukushkin

The nonsteady flow of condensing water vapor in Laval nozzles with an abrupt counterpressure within
the channel (group IIT of the modes of nozzle operation of [1]) is analyzed in the article.

The studies were performed on a vapor-dynamic test stand whose working section was placed in the
field of an IAB-51 shadow instrument [2]. An AEG movie camera was used for high-speed motion-picture
photography of the nonsteady flow. The amplitude and frequency of the static pressure pulsations along the
channel were measured with an LKh-610 piezoceramic pickup [3].

A supercritical supply of heat in the condensation zone leads to the periodic formation of transient
shock waves in the region of small supersonic Mach numbers and, as a consequence, to pulsations of the
stream parameters. This is the reason for the movement into the nozzle, with the same frequency, of a
compression shock which forms upon the increase in counterpressure.

On the basis of an analysis of Topler motion pictures a difference was found in the wave structure of
the stream in the following cases:
1) ep>ea>8 } Py <1 bar,

9) gy > 62> en ) To = Ts(Po)-

Whereas in the first case the compression shock undergoes back-and-forth motion with slight variation in
intensity, in the second case it periodically appears in a certain section of the channel, degenerating during
its movement upstream. This oceurs as a result of the fact that with a larger counterpressure gy the
compression shock moves closer to the zone of spontaneous condensation and upon its interaction with the
transient shock waves the expanding part of the nozzle immediately beyond the zone of gpontaneous conden-
sation ceases to operate in the diffusional mode.
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Fig. 1. Variation in relative amplitude of static pres-
sure pulgations along the nozzle during nonsteady flow
with condensation. Nozzle 3: 1) g, = 0.25 < gi; 2) g
>g;=0.596 >¢ek; 3) em > € = 0.669 > gn; Py = 0.9 bar;
Ty = Tyg; = 830 Hz; y+ = 30 mm.

A comparison of the results of the measurement of the amplitude of the static pressure pulsations
(Fig. 1) for the cases of g; < g (curve 1) and ey, > g, > €k (curves 2 and 3) shows that the presence of a
compression shock leads to a considerable increase in the intensity of the pulsations within the nozzle.

gq = Pa/Py
Py, T,

€k

€n

€m

£

AP = Ap/P;
X= X/y*

y*

NOTATION

is the dimengionless pressure beyond nozzle cut;
are the stagnation pressure and stagnation temperature at nozzle entrance, respectively;

_ is the dimensionless pressure beyond nozzle cut at which a straight or curved shock is

located in the exit cross section of the nozzle;

is the limiting dimensionless pressure beyond nozzle cut which separates the two possible
types of nonsteady flows of condenging vapor with counterpressure shocks within the
channel;

is the dimensionless limiting pressure beyond nozzle cut at which the counterpressure
shock disappears; '

is the frequency;

is the relative amplitude of static pressure pulsations;

is the relative longitudinal coordinate;

is the height of critical cross section of nozzle.
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EFFECT OF ELECTROSTATIC FIELD ON LIQUID
EVAPORATION FROM THE SURFACE OF
A CHARGED DROPLET

A. §. Kokin and B. G. Popov UDC 66.0471:537.212

Analytic investigations were carried out to determine the effect of an electrostatic field on the evap-
oration rate of a liquid from the surface of a single charged droplet. The motion of a charged droplet is consid-
ered in the backward flow of aheat carrier with electrostatic field forces taken into account. We obtained the equa~
tion of motion of the charged droplet for Re < 200

dvd 18pfvg + o) 0.82KE? 3
L g ; @)
dr Pe%d P
as well as of the velocity in the final form,
! 18ut
82 — 18w+ 0.82KE253 — exp —xspc)
gh10y (] { 9162d ) @)
4T 18 ’
where
! -
€= % In(gpy 85 — 18u0 £0.8 KE ).
Using the electrostatic field forces an expregsion was given for the veloeity:
N gy = 0.0745: 4P (tgrv)* ; (3)

expressions are also given for the weight W(g) and for the share ¢(g) of the evaporating liquid from the
surface of a charged droplet:

d w
=\ . = 8
Vg = 65 Ngydo - @y = —=> (4)

where
Yy =g+ Vg

Analyzing Eqs. (1)-(4) it can be seen that the use of the methods of electron—ion techniques based on
the use of electrostatic field forces in the heat- and mass-exchange treatment of dispersion media shows
promise both from the point of view of making the processes more intensive and also as far as the reduc-
tion of the overall dimengions of the apparatus is concerned.

NOTATION

Ve  is the heat-carrier velocity;
E is the field intensity;
g is the free-fall acceleration;
6q 1is the droplet diameter;
u is the dynamic viscosity of heat carrier;
p; is the droplet density;
G is the original droplet weight;
v is the specific weight of heat carrier;
is the evaporation time,

Dep. 944-75, February 20, 1975.
Original article submitted March 9, 1972.

1205



DISTRIBUTION OF AN IMPURITY IN A STREAM
WITH ALLOWANCE FOR SORPTION

V. I. Maron UDC 533.73

The equations for the transport of a substance in a stream and a sorbent have the following dimension-
less form: '

g 8
ot dt

N %
o T (T B N=NE D, )

1
my
ﬂ:—.k(c—aN), >0, t>0.

at

We can differentiate the second equation of thig system with respect to Tand introduce the new un-
known function v = 8N/87 — the rate of change of the distribution of the substance in the sorbent. We have

o o 1 0%

et Tt =em B v=u(m D, o
d Lok dc Y tam
x (agz & _“”)’ = T

For this system we consider the problem of the destruction of the initial equilibrium state, with a concen-
tration ¢, of the substance in the stream and a concentration yc, of the substance in the sorbent, owing to
the pumping through the cross section £ = 0 of liquid with a concentration c« = c; of the impurity. The cor-
responding limiting conditions have the form

10, O<f< oo, v=0, c=c¢,

®3)

>0, §=0y £ =1Cy, C(T, oo):co,

The solution of the problem (2) and (3) is sought in the form of series with regpect to the parameter
u = 1/x, which is assumed to be small:
c(t, §) =0y (T, B) + pby (T, )+ or S p918,,

o (T, §) =00 (T, §) + poy(t, ) + - or Fuflugo @)

The first two terms of the expansion for c(r, £} have the form

1 1 . 1 £ .
Bo(T, &) =¢o + Y (¢, — €a) [erfc - (p]% — ¥ br)) -+ exp t erfe - (7;—;- +¥ br/)] ,
_ (cu—ca) & 1 /1 g b (E—b7)? (5}
Oy, &) =cu— 40232, ) Var ( T 9% + 2 ,.) exp— 4bt ’
PSRRI b
mya mg

An estimate of the accuracy of the approximate solution found follows from the general theory of ex~
pansion in a series with respect to a small parameter with a leading derivative. The error of the approxi-
mation found for c(r, £) with 7€ [0, 7«) and 0 < p <y, is a quantity on the order of ul.

Dep. 948-75, March 3, 1975.
Original article submitted June 10, 1974,

SIMULATION OF SOLIDIFICATION IN CONTINUOUS CASTING

L. I. Urbanovich, V. A. Emel'yanov, UD0669.185412:621.746.6
A. P. Girya, and E. P, Karamysheva

A mathematical model is presented for the solidification and cooling of a continuous steel casting of
rectangular cross section crystallizing in the liquidus —solidus range; the model hag been run on a computer
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to predict the temperature distribution, the heat-flux dengity at the surface, the thicknesgs of the crust at
the exit from the crystallizer, and the depth of complete solidification at casting rates not yet attained.

The following is the differential equation for thermal conduction for the two-dimensional case subject
to the above assumptions:

a (1 az‘)Jwa_(k _‘l)
Pe3r = ax \"Cax } " 3y \"Cay )

where .
cs for ft<igg hg for  f<iy
cs+cel L ) Agp A g (1 — )
L= fog< <ty Ae=
fe 2 +tli*tso for fso=f<Ty ¢ for  tg<t <y

cp for >ty 'y for 1>t

D<x<ly O<n<iy

The release of the latent heat of crystallization is incorporated by increasing the specific heat in the two~
phase region by L/(t]j—tgo), while the effective thermal conductivity is dependent on the proportion ¢ of
solid phage in an elementary volume in the two-phage region.

There are four regions along the axis of the casting where the boundary conditions have to be speci~
fied separately;

a) the zone of relatively close contact in the crystallizer (between the inner walls of the latter and
the surface of the casting);

b) the zone with a gas space in the lower part of the crystallizer; where shrinkage of the metal causes
the casting to leave the wall;

c) the zone of pumped water cooling of the broad faces;

d) the air-cooled surface zone (radiation and convection cooling also), namely, the surfaces of the
narrow faces and of the wide parts not flushed by the water.

The boundary conditions are symmetrical with regpect to the geometrical axes of symmetry in the
rectangular cross section, i.e., the solution ig realized for one quarter of the cross section.

The model differs from standard ones in the literature in that one can determine the length of the
zones of relatively close contact on the wide and narrow faces in the crystallizer on the basis of measure-
ments on heat transfer to the cooling water for a particular machine,

Finite-difference numerical methods have been employed with an M-222 computer.

It is shown that the model is adequate to describe the actual solidification and coolingofa 0.24 x1.71
m* cagting, since the calculated values for the complete solidification depths and surface temperatures
agree with the actual values. Results are given on the effects of casting rate on the complete-solidification
depth.

2
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HEATING OR COOLING OF A LIQUID IN A CAVITY
IN AN UNBOUNDED SOLID

N. K. Bolotin, Yu, P. Yudkin, UDC 536.24:66.076 .4
and V., P. Provotar

The temperature of a cooled (heated) liquid varies on account of three simultaneous processes: a)
convective heat transfer between the liquid and the walls of the vessel; b) heating of the wallg by thermal
conduction (Aq is the thermal conductivity of the wall); and ¢) temperature equalization throughout the
volume V of the liquid by convection and thermal conduction.
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A model for cooling is considered in which process ¢) occurs throughout the volume very much more
rapidly than the temperature change in the liquid as a whole on account of heat lost through the wall, Then
one can take the temperature t(r) of the liquid as the same throughout the volume, apart from a thin layer
near the wall, the temperature thus varying only with time. Also, the situation can be taken as one-dimen-
sional,

Process b) is described by a known solution, which can be found, for instance, in Lykov's "Theory of
Thermal Conduction" (Chap. 7, Sec. 7), This solution is used to write the equation for heat transfer as

T

. —L:t(t)—gt(r—z)m(z)dz,
m dv s .

1

@)

0

where ¢(z) is a known function proportional to )\711. and m is the cooling rate in the regular mode (for Ap

= oo)_

Equation (1) has been solved by Laplace transformation; the general solution is expressed in terms
of the generalized variables as follows:

08 =1(v)/t (0); Bi*=xBi; Fo*=x-2Fo,

with t(7) reckoned from the wall temperature at time 7= 0, while » is the ratio of the bulk specific heats of
the liquid and solid, the characteristic length in the problem being defined asl = V/4F, where F is the total
surface of the cavity.

The solution takes the form

. . -
0= 2 A FO" erfe (w;¥'Fo*)  for  Bi*t=1, (2a)
i=l1,2
Fo* * 172
8 = (1 — Fo*/2)exp ( : ) erfc ( F: ) + (Fo*/n)'?  for Bi* =1, (2b)

where A; ,(Bi¥) and Bi,2 (Bi*) are functions of Bi* of the form:
24,2 (0) =12 (1 — 1/x)™%, 2,5 () =1 5 (1 — 1/x)'/*.
Solutions (2a) and (2b) have been examined for various values of Bi*; in the case Fo* > 1, gimple
asymptotic formulas may be derived from (2).

An example is given of the calculation of the temperature distribution in an underground ethylene
store on the basis of (2a).

Dep. 943-75, February 19, 1975.
Original article submitted October 24, 1974,

SOLIDIFICATION OF AN INHOMOGENEOTUS
HALF-SPACE WITH STEFAN'S-LAW
EMISSION FROM THE SURFACE

A. M. Glyuzman and R. Kh. Shangareeva UDC 836.24

An inhomogeneous half-space consists of a three-dimensional layer and a semiinfinite region, the
two differing in thermal characteristics. Initially, the system is uniformly heated to a temperature T,
and the bodies are in contact. Thermal radiation in accordance with Stefan's law occurs from the surface
x = 0 into a medium at zero temperature; it is assumed that the temperatures of the bodies are dependent
on the time t and coordinate x, and then the problem is to integrate a system of differential equations subject to
the nonlinear boundary condition
du,
—5;— =0

=y (£) == co [u,(0, H)* (l)

and the conjugation conditions at the boundary x = 1; a solution convenient for small t takes the form
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{Enl——x)i = {2{n—1) {Hx7?

£ oo
’ b 402 {t—1) 4a2 {t—T)
wnis )= Ty | 2 N T e, ) dr.

Vﬂ 0 l/ t— pom
If t is large it is convenient to use the solution
¢ . ail’nim(t-r)
22 ¢ A\ — T
ux,t:T__]‘vt)(l—{»Q $ e dt, 3
o 8 =To— 21 T o , | )
0 n=1
k
e eI
hotty
where h =
kyay 41
kaary

Tikhonov's method may be used to reduce the problem to one of successive approximation for a non-~
linear Volterra integral equation.

Numerical values are presented together with the trend in the successive approximations.
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